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This article proposes a fuzzy expert system (FES) for solving the multiobjective possibility 

programming problems. This FES uses decision-making rules to obtain a solution under 

qualitative information conditions. To solve such a problem, two approaches are proposed for 

estimating the solution-rules matrix. A fuzzy inference algorithm is developed. Architecture of 

the FES is presented. Potential possibilities of the expert system are showed on model examples. 
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1. Introduction. 

 

2. Problem Formulation  

The purpose of this paper is to solve the following multiobjective linear programming problem 

involving fuzzy linguistic (possibility ) parameters.  
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Where c
k 

= (ck1, …,clj)
T
, x is an n-dimensional vector i.e. xE

n 
, where E

n
 is measurable n-

measured Euclidean space, x  E
n
 is a set, satisfying restrictions of a special type aij E

1
, bi () 

are fuzzy (possibility) variables, defined in a possibility space (, P(), ). In this model of 

fuzziness [3],  is a set of elements, P() is the set of all subsets of , a is a fuzzy measure, 

satisfying the following conditions: 

1 )  () = 0,  () = l;  

2)  ( U A = sup (A), A  P() . 
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Naturally, as in probability theory, the possibility space (, P(), ) is in the background, and 

distribution functions of possible values for fuzzy parameters of bi come forward. The function 

bi (t) is the possibility that fuzzy variable bi can take on value t and be determined as follows: 

bi (t) = { | bi () = t },    E
1
 

Model (1) can be interpreted as follows: Let the vector b() = (bi() , …, bm()) contain possible 

values of resources (raw products, materials, …ect.), vector x = (x1,…, xn) be a  vector of 

manufactured volume, aij be an expense volume of resource i for product j, matrix c (c
1
 ,..., c

l
)
T
 

be the price, cost, ..ect vectors of objective functions. It is required to find an output production 

plan x = (x1,…, xn) providing the maximum profit, minimum cost, and…, ect with the possibility 

to satisfy a resources expense balance, If the quantity of these resources is not less than threshold 

values i (0, l], i = l,...,m. 

3. Yazenin’s Method 

Yazenin [1] has obtained a solution of linear programming problem (L1) with fuzzy parameters 

in the constraints where the right hand sides of the constraints contain possible values of 

resources. The solution processes based on using solving rules (5) to convert the linear 

programming problem L1 into its equivalent L2; where D = {dij} is an n* m solving rule matrix 

deterministic coefficients dij  0. 
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where a
i
 = (ai1,…,ain), Ri =(1- i)/2 , ri = (i -1)/2 

x() = D b()                                                      (5) 

The functional dependence (5) gives a method for correct plan x with the given  information 

about resources, that does not require to solve (2) and (3).  The matrix of the rule (5) can be 

estimated according to a priori information about the distribution of possible values of vector 

b() . The fuzzy variables used in this model are the normal and symmetric triangular fuzzy 

variables. Where ;  
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4. Problem Solving 

Model L2 can be represented by model M1 by replacing constraint (4) with constraints (11) and 

(12). P3 can be represented by two constraints (2) and (3) where fk (dij) = (c
k
, D) + ro (c

k
, D), 

and fk (dij) = (c
k
, D) + Ro(c

k
, D) 

fk (dij)   ,           (11) 

fk (dij)   , k =1 ,…,l,         (12) 

So, P3 can take the following form 
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For solving the above mentioned problem (1), we will solve model L3 for each objective 

function fk(c
k
, x) to construct the membership function (13) and (14) for fk (dij) and fk (dij) 

respectively. Afterwards, based on the Zimmermman approach for solving multiobjective linear 

programming problems, we will solve M1 to find the best compromise solution.   
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Conclusion 

In this paper we presented architecture of FES for solving MODM problem with fuzzy 

(possibilistic) parameters in the right hand side. The general approach for solving such a problem 

has been introduced combined with an illustrative example.  The advantages of this approach are 

it’s not necessary to resolve the problem each time the DM changes his preferences; i.e. this 

method gives the DM an on-line answer, and let the DM to reflect his/her preference in linguistic 

form.      
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